Recycling of silicon from photovoltaic production sludge

Motivation:
- Global warming and CO₂-emission lead to a stronger usage of alternative energies like the photovoltaic.
- Over 90% of present solar cells are manufactured on the basis of crystalline silicon.
- SoG-Si production capacities are limited and prices high up to 200 US$ / kg (spot market).
- The wafer cutting process generates approx. 34% of Si losses in form of fine Si-powders in a sludge → high financial losses.

Process idea:

Sludge
(Si / SiC / metallic impurities / coolant lubricant)

- **Physical conditioning**
- **Leaching with hydrochloric acid**
 → Fe, Cu, Zn
- **Pelletising**
 Binder: sodium silicate
 Additive: SiO₂
- **Melting**
 Aggregate: EAF
 Crucible: graphite
 Additive: CaO
- **Refining of silicon**
 Techniques: evaporation, gas purging, crystallisation

Result:
- Turning a waste to product - utilisation of the sludge as "new" feedstock for production of upgraded silicon.

Sludge characterisation

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>SiO₂</th>
<th>SiC</th>
<th>Fe</th>
<th>Cu</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>~41%</td>
<td>~7.5%</td>
<td>~45%</td>
<td>~6.5%</td>
<td><0.5%</td>
<td><0.05%</td>
<td></td>
</tr>
</tbody>
</table>

Si production in EAF - main reactions:
- y·SiO₂ + SiC = (2-y)·Si + (2y-1)·SiO + CO
- SiO + SiC = 2 Si + CO → risk of Si losses

EPMA Analysis of silicon
- Complete reaction of SiC with SiO₂ to Si
- Segregation of the impurities at the grain boundaries

Contact: Andreas Lützerath
IME Process Metallurgy and Metal Recycling, RWTH Aachen
Intezstr. 3, 52056 Aachen, Germany;
Tel.: 0049-(0)241-8095203; Email: aluetzerath@ime-aachen.de