Investigations on oxygen removal from molten TiAl scrap by metallothermic reduction

Motivation:

- Complex process chain and production rejections of up to 90% result in high production costs during manufacture of titanium aluminides
- Reducing manufacturing costs by recycling of strongly oxygenated scrap via:
 - utilization of industry-proven processes
 - highly flexible selection of input materials
 - in-situ adjustment of the alloy composition

Feedstock (production scrap) → Vacuum induction melting → Electro-slag remelting → Vacuum arc remelting → Product

- Input material contains more than 1000 ppm oxygen
- Melting of the scrap in a ceramic crucible with subsequent homogenization
- Calcium addition for deoxidization results in formation of a CaO-slag
- Residual oxygen content of about 700 ppm

\[
\begin{align*}
\text{Ca}_2\text{TiAl} + [\text{Ca}] &\rightarrow <\text{CaO}> \\
\text{TiAl} + [\text{Ca}] &\rightarrow <\text{CaO}>
\end{align*}
\]

- Solid \{ liquid \} \{ gaseous \}

- Remelting with a continuously activated reactive CaF$_2$-slag results in:
 - reduction of the oxygen content
 - removal of nonmetallic inclusions
 - almost no existence of shrinking holes

- Potential of bulk fluoridation
- Residual oxygen content below 500 ppm
- Further homogenization of the material

- Optional final remelting step in order to:
 - remove potentially objectionable calcium residues
 - remove last nonmetallic inclusions
 - adjust the designated crystal structure

- Safety remelting step with regard to existing standards

Selection of suitable ceramic linings:

- Y$_2$O$_3$ coated Al$_2$O$_3$:
 - Flaking of Y$_2$O$_3$ coating
- High purity CaO:
 - Promising durability

Results:

- Oxygen content below 500 ppm can be achieved
- Potential of „bulk fluoridation“ existent
- Decrease of production costs of about 30 – 40 %

Dipl.-Ing. Peter Spiess
IME Process Metallurgy and Metal Recycling
RWTH Aachen University, 52056 Aachen, Germany
pspiess@ime-aachen.de www.ime-aachen.de