Challenges for Recycling of Li-Ion HEV Batteries:
- substitution of cobalt by less valuable metals compromises economic efficiency of recycling processes
- adjustment of existing recycling processes to future electrode materials
- backflow of spent batteries will increase drastically, i.e. current recycling capacities have to be increased

Motivation and Target:
- spent batteries contain high valuable secondary raw materials
- recycling is prescribed by EU Battery Directive
- recovery of all valuable materials including lithium necessary

Recycling of Li-Ion HEV Batteries

Hydrometallurgical Route
- conditioning of spent Li-ion batteries
- electrode material
 - leaching with solvent
 - precipitation of Li$_2$CO$_3$ (99.9%)
 - residues
 - wastewater, metals, salts

Pyrometallurgical Route
- high temperature processing (EAF)
 - Li concentrate
 - metal alloy
 - faster process
 - higher productivity
 - limited selectivity
 - higher energy use

Long-time Experience in Battery Recycling at IME:
- development of battery recycling processes for ZnC, Alkaline, NiCd, NiMh and Li-Ion
- proven pyrometallurgical processing for concept of portable consumer-type Li-Ion batteries

In March 2008 the IME received the „Kaiserpfalz-Award of Metallurgy 2008“ for its research works in battery recycling!

Contacts: Matthias Vest and Tim Georgi-Maschler
IME Process Metallurgy and Metal Recycling, RWTH Aachen
Intzestr. 3, 52056 Aachen, Germany
e-mail: mvest@ime-aachen.de or tgeorgi@ime-aachen.de