Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries

Fabian Diaza, Yufengnan Wanga, Reiner Weyheb, Bernd Friedricha

a Institute of Process Metallurgy and Metal Recycling IME, RWTH Aachen University, Intzestr. 3, 52056 Aachen, Germany
b ACCUREC Recycling GmbH, Bataverstr. 21, 47809 Krefeld, Germany

Article info

Article history:
Received 19 June 2018
Revised 13 November 2018
Accepted 16 November 2018

Keywords:
Li-ion batteries
Off-gas
Recycling
Thermal runaway
Quantitative analysis
Toxicity
Pyrolysis
Combustion
Mechanical treatment

Abstract

Recycling of Li-ion batteries (LIBs) is becoming an urgent issue. However, the chemical composition and the hazard of off-gas produced during the recycling process still remain unclarified due to the complicated reactions during thermal runaway (TR). In order to meet the legislative requirements to carry out an environmentally friendly recycling, this manuscript aims to undertake quantitative analysis and toxicity evaluation of the off-gas produced in mechanical treatment and thermal treatment of LIBs. The measurements were carried out by online Fourier transform infrared spectroscopy (FTIR) and ion chromatograph (IC). The volume of total off-gas was calculated and its toxicity was evaluated by USA’s Protective Action Criteria. The influences of treatment method, state-of-charge (SOC), atmosphere, and type of cathode were investigated.

1. Introduction

A battery is a device which can convert its inside chemical energy into outside electric energy (Linden and Reddy, 2002). Among all sorts of batteries in the market, lithium ion batteries (LIBs) in consumer electronics and electric vehicles (EV) are rapidly growing because of their high energy density, extended cycle-lifetime, and constant voltage output (Pillot, 2017b), resulting in boosting raw material demand and legislation required collection of spent LIBs (Zeng et al., 2014).

Looking at the future prospective of main LIB users, the market research and consulting firm, Avicenne energy, made assumptions that the portable devices will increase at a rate of 6% per year in volume from 2015 to 2025 (Pillot, 2013, 2017a), industrial and stationary demands will increase at a 16% average growth rate per year. The total hybrid electric vehicles (HEVs) market will achieve 4.8 million (M) units with 35% LIB in 2020 and around 7 M units with 90% LIB in 2025; this without including micro hybrid vehicles. It is quite difficult to forecast the full electric market. Assuming that on average an EV will need 25 kWh battery pack, it will achieve 0.6 M units in 2020 worldwide except for China and 1 M units in 2025, while China alone is expected to have 1 M EVs in 2020 and 1.5 M in 2025 (Pillot, 2017b, 2013). The cycle life time of a battery can be reached around 800–1500 charge cycles depending on the type of applications and individual habits. For example, the batteries would be replaced for a Battery Electric Vehicle (BEV) at 25% loss of the capacity, which can be around the warranty period or 8–10 years of a normal lifetime (Amarakoon et al., 2013; Bloom et al., 2001). LIB in consumer applications can also be dispose because of the change of modern technologies against out-of-date technologies, even before batteries reach a technical end-of-life (EOL). According to studies of the U.S. Environmental Protection Agency, 90% of all mobile devices in a given model year have been sent for their EOL management in less than five years (U.S. environmental protection agency, 2011). Although the spent LIBs are approaching their EOL, little residual power still remains (Doerffel and Sharkh, 2006). In general, there are many attempts to develop an efficient recycling process based on mechanical and thermal pretreatments (Georgi-Maschler et al., 2012; Wang and Friedrich, 2015). However, unlike other batteries, LIBs often explode during the recycling process due to radical oxidation when lithium metal produced from battery overcharge sustains a mechanical shock from exposure to the air. Such kinds of uncontrollable exothermic reactions is often called thermal runaway.
In a conventional LIBs recycling process, cells are commonly heated and shredded, which ultimately promote violent reactions and explosion during the handling process. Therefore, it is of great importance to analyze the compositions of the off-gases and clarify their hazards. Although lots of efforts have been made to study TR and its mechanisms, the gas emission of LIBs has been studied only to a limited extent. Therefore, the main focus of this study is firstly to understand the emissions recorded during pre-treatments (mechanical and thermal) and their expected toxicity, which was evaluated using the USA’s Protective Action Criteria. The influences of treatment method, state-of-charge (SOC), atmosphere, and type of cathode are also investigated.

2. Basics on thermal runaway reactions and reported emission gases from LIBs

It is stated that TR could normally take place in case of abuse of the batteries like heating, short-circuit, overcharge, nail penetration, crushing. In literature, some observations have been reported like the influence of cathode material in the TR e.g. Lithium Manganese oxide (LMO) is safer than Lithium Cobalt oxide (LCO) (Tobishima and Yamaki, 1999); high risk of explosion during over-heating, overcharge and short-circuit as a result of the increased internal heat and pressure (Chen et al., 2006); Ohsaki et al. studied overcharge reaction by heating the overcharged anode and cathode separately. Their results showed that the thermal runaway reaction during overcharge was caused by the violent reaction between the overcharged anode (deposited lithium) and the electrolyte solvent at high temperature which was the result of the rapid exothermic reaction of the delithiated cathode and the electrolyte (Ohsaki et al., 2005). It is reported that some techniques can be used to avoid explosion. For instance, discharging the batteries before the recycling process reduces the risks for the following treatments (Li et al., 2012, 2011; Sun and Qiu, 2011). There are approaches for the complete discharging of modules or batteries in a bath of a conductive liquid solution (e.g. sodium chloride, calcium carbonate, sulphuric acid, hydrochloric acid or nitric acid) or with the help of external resistances (Zeng et al., 2014; ELIBAMA, 2014). However, it is time consuming and hardly achieves full discharge for every cell.

The TR follows a mechanism of chain reactions, during which the reaction of the battery component materials occurs one after another (Feng et al., 2017). Although there are some differences among TR caused by different abuse conditions of different kinds of LIBs, the main reaction mechanism could be summarized in Fig. 1.

The initial decomposition of thin passivating Solid-Electrolyte Interphase (SEI) layer on the anode is regarded as the first step that occurs during the TR. The SEI layer is mainly consisted of stable (such as LiF, Li2CO3), and metastable components (such as polymers, ROCO2Li, (CH2OCO2Li)2 and ROLi). Some degradation reactions applied to the SEI are presented in Eqs. (1) and (2) (Chen et al., 2006; Feng et al., 2017; Spotnitz and Franklin, 2003; Wang et al., 2012).

\[
\begin{align*}
(CH_2OCO_2Li)_2 & \rightarrow Li_2CO_3 + C_2H_4 + CO_2 + 1/2O_2 \\
2Li + (CH_2OCO_2Li)_2 & \rightarrow 2Li_2CO_3 + C_2H_4
\end{align*}
\]

Once the SEI decomposes at high temperature, the intercalated lithium in the graphite anode has the chance to contact the electrolyte. Within ~120 °C–250 °C, the SEI decomposition and
regeneration occur simultaneously. When the structure of the SEI collapses, graphite anode decomposes with electrolyte. Some degradation reactions of the electrolyte solvent in contact with lithium are presented in Eqs. (3) and (4) (Feng et al., 2017).

\[
\begin{align*}
2Li + C_6H_{12}O_3 (EC) & \rightarrow Li_2CO_3 + C_2H_4 \\
2Li + C_6H_{12}O_3 (PC) & \rightarrow Li_2CO_3 + C_2H_6 \\
2Li + C_6H_{12}O_3 (DMC) & \rightarrow Li_2CO_3 + C_2H_6
\end{align*}
\]

(3)

(4)

Cathode decomposes when temperature reaches the onset temperature of their decomposition points. Some reactions occurring at the cathode are presented from Eqs. (6)-(9) (Chen et al., 2006; Feng et al., 2017; Kawamura et al., 1999; Wang et al., 2012).

\[
\begin{align*}
Li_{0.5}CoO_2 & \rightarrow 1/2LiCoO_2 + 1/6Co_2O_3 + 1/6O_2 \\
Li_{(1-x)}NiO_2 & \rightarrow (1—2x)LiNiO_2 + xLi_2O_3 (x \leq 0.5) \\
Li_{(1-x)}NiO_2 & \rightarrow [Li_{(1—x)}Ni_{2x—1/3}] [Ni_{x}Co_{4x/3}]O_{x—4/3} + (2x—1/3)/O_2 (x > 0.5) \\
Li_{(1-x)}NiO_2 & \rightarrow (2-x)Li_{(1—x)}/(2—x)Ni_{1/2}O + x/2O_2
\end{align*}
\]

(6)

(7)

(8)

Although lack of validation, Röder et al. (2013) proposed a possible mechanism of the LiFePO_4 (LFP) decomposition as for the delithiated Li8FePO4 (see Eq. (10)).

\[
2Li_{0.5}FePO_4 \rightarrow Fe_2P_2O_4 + 1/2O_2
\]

(10)

The solvent also experience oxidation reactions when it is in contact with oxygen during e.g. a combustion process. Some reactions are presented from Eqs. (11)-(13).

\[
\begin{align*}
5/2O_2 + C_6H_{12}O_3 (EC) & \rightarrow 3CO_2 + 2H_2O \\
4O_2 + C_4H_8O_3 (PC) & \rightarrow 4CO_2 + 3H_2O \\
3O_2 + C_6H_{12}O_3 (DMC) & \rightarrow 3CO_2 + 3H_2O
\end{align*}
\]

(11)

(12)

(13)

3. Experimental

Four types of commercially available LIBs with geometrical format cylinder cell and pouch cell were investigated. Those cells used LiCoO_2 (LCO), LiNi_0.5Mn_0.5O_2 (NMC), or LiFePO_4 (LFP) as cathode and carbon as anode. LCO 18650 and NMC 18650, rated to a nominal capacity of 3000 mAh and 2600 mAh respectively and are produced by Samsung. LFP 18650, rated to a nominal capacity of 1100mAh is produced by A123. LCO pouch cell, rated to a nominal capacity of 2500 mAh is produced by PKCELL. It is known from the cells’ material safety data sheet that the electrolyte compositions are based on two or more mixtures of unknown weight ratios of diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylene carbonate (EC), ethyl methyl carbonate (EMC), and propylene carbonate (PC). For all those cells, at least LiPF_6 are used as conducting salt.

The influence of different treatment methods, treating atmosphere and SOC were investigated. For LCO 18650 cells the complete SOC-window ranging from 0% to 100%, with intermediate steps of 50%, were investigated. For other types, a fully charged cell was used. Pyrolysis or combustion, and penetration tests were conducted to simulate thermal treatment and mechanical processing, respectively.

The thermal treatment was conducted in a programmable resistance furnace, as shown in Fig. 2. The reactor has a volume of 1 L and is sealed with a water cooling lid to create a fully closed environment. It contained a pressure gauge, a gas sampling vent, a thermocouple, a carrier gas inlet (Air/N_2) and an exhaust. Due to the small volume of the reactor, a special explosive container made of steel was designed to prevent distribution of particles in the sampling system and to protect the reactor during the heating process. Before starting the thermal treatment experiment, an explosive container charged with one battery was placed inside the reactor, steel chips were placed on the top of the container in the reactor as a dust filter. The exhaust was connected to the scrubber and a balloon was placed before the scrubber as a buffer during process.
Table 1
Summary of emission gases from LIBs.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Material</th>
<th>Cathode Type</th>
<th>Test condition</th>
<th>Off-gas</th>
<th>Test equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campion et al. (2004)</td>
<td>LCO</td>
<td>Heating</td>
<td>CO₂, CO, H₂, CₓHᵧ, HF</td>
<td>Fluoride</td>
<td>GC–MS, NMR</td>
</tr>
<tr>
<td>Ohsaki et al. (2005)</td>
<td>NCA</td>
<td>Overcharge</td>
<td>GC–MS, NMR</td>
<td>GC–MS</td>
<td></td>
</tr>
<tr>
<td>Abraham et al. (2006)</td>
<td>NCA</td>
<td>Vent/Penetration</td>
<td>GC–MS</td>
<td>GC–MS</td>
<td></td>
</tr>
<tr>
<td>Onuki et al. (2008)</td>
<td>LMO Pouch</td>
<td>Heating Combustion test</td>
<td>Ar</td>
<td>CO₂, HCN, NOₓ, SOₓ, HCl</td>
<td>GC/AED, FTIR, FID, paramagnetic analyzer</td>
</tr>
<tr>
<td>Ribière et al. (2012)</td>
<td>LMO Pouch</td>
<td>Heating Combustion test</td>
<td>Air</td>
<td>CO₂, HCN, NOₓ, SOₓ, HCl</td>
<td>GC/AED, FTIR, FID, paramagnetic analyzer</td>
</tr>
<tr>
<td>Wang et al. (2012)</td>
<td>LCO</td>
<td>TR</td>
<td>CO₂</td>
<td>CₓHᵧF</td>
<td>GC–MS</td>
</tr>
<tr>
<td>Chanson (2013)</td>
<td>Li-ion</td>
<td>TR</td>
<td>O₂</td>
<td>POF₃</td>
<td>FTIR</td>
</tr>
<tr>
<td>Ponchaut et al. (2014)</td>
<td>LCO</td>
<td>TR</td>
<td>Air</td>
<td>POF₃</td>
<td>GC</td>
</tr>
<tr>
<td>Larsson et al. (2014b)</td>
<td>LCO</td>
<td>Overcharge</td>
<td>Air</td>
<td>SO₂</td>
<td>NDIR, FID, FTIR</td>
</tr>
<tr>
<td>Golubkov et al. (2015)</td>
<td>LFP</td>
<td>Heating</td>
<td>Ar</td>
<td>SO₂</td>
<td>GC–MS, IC</td>
</tr>
<tr>
<td>Lecocq et al. (2016)</td>
<td>LFP</td>
<td>combustion</td>
<td>Air</td>
<td>SO₂, COS, CₓHᵧOₓ, CₓHᵧNₓ, C₅H₉NO</td>
<td>GC–MS, QMS, QEPAS, IC</td>
</tr>
<tr>
<td>Sun et al. (2016)</td>
<td>Li-ion Both</td>
<td>Combustion</td>
<td>Air</td>
<td>SO₂, COS, CₓHᵧOₓ, CₓHᵧNₓ, C₅H₉NO</td>
<td>FTIR</td>
</tr>
<tr>
<td>Kwade et al. (2016)</td>
<td>NCM Pouch</td>
<td>Penetration</td>
<td>N₂</td>
<td>CₓHᵧNₓ, H₂</td>
<td>FTIR</td>
</tr>
<tr>
<td>Nedjalkov et al. (2016)</td>
<td>NCM Pouch</td>
<td>Penetration</td>
<td>N₂</td>
<td>CₓHᵧNₓ, H₂</td>
<td>FTIR</td>
</tr>
<tr>
<td>Warner (2017)</td>
<td>NMC Pouch</td>
<td>Penetration</td>
<td>Air</td>
<td>CₓHᵧNₓ, H₂</td>
<td>FTIR</td>
</tr>
</tbody>
</table>

*: detected.

Fig. 2. Setup of quantitative thermal treatment off-gas analysis.
explosion. The function of the scrubber was to collect the halogen in off-gas. It contained two bottles, the first bottle was empty and acted as a safe buffer so as to prevent the liquid in the second bottle entering the reactor in case of pressure loss in the FTIR pump, whereas, the second bottle contained 200 mL 0.1 M NaOH to clean the off-gas. Gas sampling vent was connected to the sampling probe to collect samples of gas every 10 s during the process. N₂ was connected to the analyzers to be used as a carrier gas during the experiment. FTIR analyzer and O₂ analyzer were turned on and left in operation until their measuring cells reached the required temperature of 180 °C and 5 °C respectively. FTIR analyzer was calibrated manually using Calmet software. The main pump was adjusted to 1 L/min, whereas, the O₂ analyzer pump was adjusted to 0.4 L/min. Before the pyrolysis gas entered the FTIR, the gas was diluted with N₂ to a ratio of 1:14.

The penetration tests for quantitative analysis were carried out in a specially designed chamber equipped with a sealed penetration device, which have a triple nail in the form of a triangle at the penetration side. The cell was fixed in the groove of the holder and by pressing the penetration device, the penetration test was conducted. The nails (electric conductor steel) are supposed to simulate the shortcut between anodes to cathode due to the abuse of penetration. The FTIR was connected to the penetration reactor and similar process was conducted as indicated in Fig. 2. Additional IC tests were conducted after FTIR to analyze the concentrations of F and Cl caught in the washing bottles.

The FTIR analyzer used for these experiments corresponds to a Gasmet DX4000, which is a typical equipment used to measure H₂O, CO₂, CO, NO, NO₂, N₂O, SO₂, NH₃, CH₄, HCl, HF, and different volatile organic compounds. Samples of gases are collected using a portable sampling system, every 10 s and the sample cell is heated to 180 °C, to avoid any condensation of the produced gases. In addition to the Gasmet DX4000, PMA 10 paramagnetic O₂ Analyzer and LFE Conthos 3E thermal conductivity H₂ Analyzer were also employed to detect the concentration of O₂ and H₂ in vol %, respectively. The halogen samples were collected in washing bottles filled with 200 mL 0.1 M NaOH. Portion of the samples were transferred to the ion chromatograph and inductively coupled plasma optical emission spectrometry (Metrogm Compact IC ion chromatograph).

4. Results and analysis

The amount of off-gas is calculated by integrating the time-concentration records from the FTIR, obtaining total volumes in NL, as shown in Eq. [23].

\[V = \frac{1}{d} \sum_{i=0}^{n} \frac{V(t_{i+1} - t_i)(c_{i+1} + c_i)}{2} \]

(23)

where \(V \) is the volume of compound (NL), \(d \) is the diluted ratio, \(V \) is flow rate of carried gas (NL/min), \(c_i \) is concentration of compound at time \(t_i \) (ppm), \(c_{i+1} \) is concentration of compound at time \(t_{i+1} \) (ppm).

The total volume of off-gas is obtained by summing the volume of all compounds together (refer to Fig. 3). The legends are displayed in order of battery type, atmosphere, SOC, penetration or not. There are two penetration tests that underwent TR: fully charged LFP and pouch cell penetrated under N₂. Fig. 3 shows that LIBs produce the max amount of off-gas during combustion in air. Moreover, for the volume of off-gas produced in thermal treatment under air and N₂, it is clear that the amount of off-gas produced under air is more than that produced under N₂. The total amount of off-gas increases linearly with increasing mass loss, except for the off-gas produced during combustion in air. This observation can be explained since in thermal treatment of LIB under N₂ (Pyrolysis) decompose the organics and produces in addition to the gas products a solid char (coke) that remains in the material. This means that not all organic material can fully be removed from the batteries. In contrast, during combustion, the available oxygen react with organics promoting combustion reactions (CO₂, CO, H₂O) that leads to fully gasification of organics from the target material. It is also important to mention that comparing off-gas production and mass loss between battery cell types can be challenging as different cells have different geometries and amount of electrolytes/organics. Therefore, LCO can be considered the center or model of the whole study since all parameters were evaluated for this battery. Other battery cells can only be taken as indicators.

Comparing the volume of off-gas produced in penetration test and that produced in thermal treatment, it can be seen that thermal treatment produces more off-gas than penetration test. Penetration test produces the minimum amount of off-gas and has the lowest mass loss. This can be easily explained as the main reaction happening was the boiling of electrolyte solvents after opening the batteries as detected with the FTIR. However, when TR occurs during penetration test both the amount of off-gas and the mass loss increase greatly compared to that without TR.

In Fig. 4, an example (LCO pouch cell) of the material before and after penetration test and pyrolysis trial is shown. As it is noticed, major damage occurred during thermal treatment (pyrolysis) and penetrations test with an SOC of 100%. The main reason for this similarity is the TR reactions that takes place in both conditions reached temperatures higher than 700 °C, as evidenced by partial melting of aluminum foils. The penetration test with 50% SOC did not experience TR during treatment. Therefore, weight loss is very low compared to other conditions, as indicated in Fig. 3.

4.1. Evaluation of toxicity

Although growing attention has been paid to investigate the off-gas produced by LIBs, so far no method is put forward to carry out a quantitative evaluation of toxicity of total off-gas produced by LIBs. In addition, considering the complex issue of fire toxicity (Stec and Hull, 2010), the toxicity of LIBs in case of TR is even more complex due to the specific chemistry of their components compared to conventional fuels (Lecocq et al., 2016). In this case, a new method is proposed to give an evaluation of toxicity of the total off-gas produced by LIBs.

USA’s Protective Action Criteria (PAC) is introduced here to undertake a quantitative comparison of toxicity of total off-gas. PAC₁, which is the mildest toxic concentration of substance, is used to perform the following calculations (ATL International, 2012; Hess et al., 2014).

Namely, theoretical contaminated volume of single LIB is calculated to evaluate the toxicity. Assuming that there is no condensation during the detection period and interaction among different compounds can be negligible, the theoretical contaminated volume of single LIB can be expressed as the sum of the volumes required to guarantee the human health for all the substances detected in off-gas:

\[V_{\text{contaminated}} = \sum \frac{V_{\text{substance}}}{\text{PAC}_1} \]

(24)

The higher the theoretical contaminated volume is, the more toxic the off-gas becomes. Fig. 5 depicts PAC₁ theoretical contaminated volume for a single fully charged cell. Here the four axes are on behalf of four types of cells: LCO 18650, NMC 18650, LFP 18650, and LCO pouch cell. The values on the axis stand for theoretical contaminated volume pre cell in unit of m³. TR occurs when penetrating fully charged LFP 18650 and LCO pouch cell under N₂.

As indicated in Fig. 5, pyrolyzed LFP 18650 cell under N₂ produces the most acute off-gas with a theoretical contaminated volume of 379 m³ while combusted LCO pouch cell under air produces...
the less hazardous off-gas in thermal treatment with a theoretical contaminated volume of 72 m3. Thermal treatment produces more toxic off-gas than mechanical treatment. The toxicity of off-gas produced during pyrolysis under N$_2$ is higher than that produced during combustion under air for fully charged NMC, LFP and pouch cells.

As indicated in Fig. 6, at least ten species of toxic gases were detected (DC, EC, PC, DMC, HCl, CO, Acrolein, COF$_2$; HF and formaldehyde). Their presence can be explained with the literature but their exact pathway can be rather complex and difficult to fully understand. Nevertheless, it was already reported in previous work that during thermal treatment (Diaz et al., 2018), the first phenomena correspond to simple dehydration reactions of water and electrolyte that occurs between 100 and 250 °C. This can explain the presence of H$_2$O and some electrolyte solvents like EC, PC and DMC as described in reactions (3)–(5). After that, degradation of
the electrolyte and solvents takes place together with degradation of SEI leading to formation of hydrocarbons (CxHy) and CO2. The last one as a result of combustion reactions with the most probably oxygen source in the form of hydroxyl radicals produced during degradation of organics. Some oxidation reactions are described in equations (11)–(13). Like this, CO can be also formed as incomplete combustion of hydrocarbons. It could also be observed that by increasing the temperature formation of HF and other fluorides like POF3, PF4OH, C2H5F is expected as registered in reactions (14)–(21). All detected toxic gases contribute to the theoretical contaminated volume and their share in the total volume can be observed in Fig. 6.

It can be seen from Fig. 6 that the theoretical contaminated volumes caused by HF, COF2, acrolein, CO, HCl, formaldehyde, and electrolyte solvent (PC, EC, DEC, and DMC) account for more than 96% of the total theoretical contaminated volume. This suggests that HF, COF2, acrolein, CO, HCl, formaldehyde, and electrolyte solvent are the most important toxic compounds for evaluating the toxicity of off-gas produced by LIB. The work published by Nedjalkov et al. (Nedjalkov et al., 2016) in 2016 indicated a similar result that electrolyte solvent, benzene, toluene, styrene, biphenyl, acrolein, CO, COS, and HF were the eleven crucial gas mixture constituents for damaged LIB. This is also consistent with the study of Ribiére et al. (2012) who investigated the fire-induced hazards of LIBs. They identified the toxic emissions of HF, CO, NO, SO2, and HCl as the first order evaluation of the danger of toxic gases. Larsson and Andersson et al. (Andersson et al., 2016; Larsson et al., 2017, 2014a, 2014b) have also investigated toxic gas emissions from LIB fires. Their studies focused on the quantitative analysis of emission of the fluorides.

The influence of SOC on theoretical contaminated volume is shown in Fig. 7. No obvious tendency is observed for the total theoretical contaminated volume with increasing SOC. The theoretical contaminated volume of cell with 50% SOC is higher than that with 0% and 100% SOC during combustion under air while that is lower during pyrolysis under N2.

It could be also seen from Fig. 7 that the contaminated volumes of fluorides decrease with increasing SOC. This is in accordance to the study of Larsson et al. (2017), that the total amount of HF was higher at decreasing the SOC. Similar, Ribiére et al. (2012) have found out that only HF concentration in the off gas indicated a SOC dependence. For this particular case, the maximum concentration was achieved with fully discharged batteries. Lecocq et al. (2016) have also detected the same tendency.

Although the amount of HF decreases with increasing SOC, other fluorides have a different tendency, as depicted in Fig. 8. The mole amount of substance (mol) is calculated by using perfect gas law:

\[n = \frac{V}{22.4(N/L/mol)} \times i \]

where \(n \) is the mole amount of substance (mol), \(i \) is the number of specific atoms contained in compound formula.

Considering the two most detected fluorides HF and CF4, it could be observed that their formation is highly affected by the state of charge of the battery, as stability of one or the other varies with this as well as with the type of atmosphere (Air or N2). In Fig. 8, the molar amount of fluorine in the total volume of each species was calculated and plotted in a single figure. By contrasting the F emitted as HF and CF4, it is possible to predict their distribution in the gas produced during the thermal treatment. As it can be seen the molar amount of F emitted as HF increases with the mole amount of F emitted as CF4 decreasing: at 100% SOC, the mole amount of F in HF is the lowest and the mole amount of F in CF4 is the highest, while at 0% SOC the opposite results are obtained. It seems that HF is more likely to be formed in case of thermally treated low SOC cells. This could be explained by the preliminary theory of Scheirs et al.’s (Scheirs and Kaminsky, 2006) that higher...
temperature and higher heating rate intensified the bond breaking and production of small molecules. Although production of HF can be easily explained with the reported data, mechanism of formation of CF₄ from LIBs could not be completely understood in the present study. However, most probably during heating the fully charged cell, TR takes place and temperature and heating rate increase drastically leading to formation of small molecules of difficult formation such as pure H₂ and CF₄.

Emissions of CO, HF and POF₃ were found in TR reactions in accordance to a recent work published by Larsson et al. (2018). Toxicity of CO and HF has been documented in the past. However, toxicity of POF₃ is strongly related to possible formation of HF, as this compound is considered as precursor by hydrolysis (see Eqs. (14), (26) and (27)), (Larsson et al., 2018), where water/humidity is enough to produce HF, thus, its relevance.

\[
P_{\text{F}} + \text{H}_2\text{O} = \text{POF}_3 + 2\text{HF} \tag{26}
\]

\[
\text{POF}_3 + 3\text{H}_2\text{O} = \text{H}_3\text{PO}_4 + 3\text{HF} \tag{27}
\]

4.2. Verification of halogens detected in FTIR

The presence of fluorine can be easily understood due to the F-containing electrolyte and the PVDF binder in the LFP batteries (Feng et al., 2017; Ortner and Hensler, 1995). As well, chlorine can be found as inorganic electrolyte in the form of e.g. LiClO₄ (Julien et al., 2015; Marom et al., 2010) or also in the plastic covers as flame retardants. Due to the high toxicity and relative large emission volume of halogens compared to other crucial toxic compounds for LIB off-gas, additional IC tests are conducted again after FTIR to analyze the total F⁻ and Cl⁻ trapped in NaOHₐq. The analysis is carried for thermal treatments and some for the penetration tests. Concentrations lower than 10 mg/L are neglected.

As it is shown in Fig. 9, LFP 18650 cells produce the maximum amount of fluorides and chlorides both under air and N₂ among the four types of LIBs used for this work. By comparison of No. 1–3 and 4–6, it can be noticed that discharged cells show the highest fluorides values. This consists with the volume of HF calculated in FTIR detection. In addition, by comparing No. 7 and 8, 9 and 10, and 11 and 12, it can be concluded that the amount of soluble halides (in NaOHₐq) produced by thermal treatment under N₂ is higher than that produced under air. At this point, the lack of halides removed in the scrubber during combustion with air, indicates the possibility of formation of unknown halides that are hardly soluble in NaOH, or formation of dioxins/furans which might be distributed in the gas outlet of the reactor, piping or first empty bottle. The last one, can be possible as formation of such a compounds can be supported by the presence of oxygen, which leads to the halogen elimination in the HCL or HF followed by hydroxyl radical addition. The addition reactions of OH leads to formation of PCDD/F products (Environment Australia, 1999). This is also supported by Lopes et al. (2015), where authors recommended to undergo the gasification of combustion of waste under oxygen deficit to avoid formation of dioxins and furans.

5. Conclusions

It is observed that compared to thermal treatment, penetration test produces less amount and less toxic off-gas. For thermal treatment, SOC has no obvious influence on the toxicity of total off-gas produced for LCO Cells. However, the type of gas varies with the SOC. For instance, HF is reported to be more stable at low SOC (0%) than that at high SOC (100%), leading to the formation of other undetected fluorides like CF₄. This observation fitted with previous published work (Ribiére et al., 2012; Lecocq et al., 2016). However, due to the non-conclusive results in terms of theoretical contaminated volume by variating the SOC for LCO cells further studies with other cell types should be conducted to get a more certain picture for this parameter.

In general, combustion produces more off-gas at the same time that the toxicity of off-gas is reduced compared to pyrolysis in N₂. Among the four types of cells used in this work, LFP generates the most dangerous off-gas during thermal treatment. HF, COF₂, acrolein, CO, formaldehyde, HCl, and electrolyte solvents are the most toxic compounds, they account for more than 96% of the total theoretical contaminated volumes. Figure 10. Summarized assessments on the influence of different factors on toxicity in the off-gas produced by LIBs recycling.
References

European Li-Ion Battery Advanced Manufacturing for Electric Vehicles (ELIBAMA), 2014. Li-Ion BATTERIES RECYCLING. The batteries end of life... Available online: http://www.webcitation.org/7ou54Q42R. Accessed on 14 August 2018.

